Eye Gaze Calibration Considerations

• **Positioning of the student**: Ensure the student is well supported in their seating system. Optimal pelvis and trunk stability will influence head, and therefore gaze, position.

• **Positioning of the device**: The device should be positioned relative to the student. If the student is at a tilt, side lying etc., the device needs to be parallel. Move the device, not the student.

• **Understand the process**: Know what to expect in the calibration process to increase success. Focus on the stimulus at each static location more than anticipating its next location.

• **Model the process**: The concept of calibration can be abstract. Demonstrate and verbalize what you are doing for new users, (e.g., “I am staring at each dot until it pops”).

• **Modify preferences for the user**:
 - **Number of calibration points**: Less points, allows for more head movement.
 - **Timing**: Set to slow, medium, or fast depending on processing time. Or choose to step scan with a mouse click or switch, to suit the needs of a student.
 - **Size**: Enlarge the stimulus to support visual acuity and attention deficits.
 - **Stimulus**: Import a motivating character, icon, or familiar face.
 - **Colour**: Change the background colour to support visual discrimination.

• **Sibling calibration**: The calibration of a sibling or a parent is a good option to get going with using a device if the student cannot yet calibrate.

• **Optimal lighting**: Ensure there is no environmental glare which could impact the camera reading the student’s eyes.

• **Reduce distractions**: Ensure that visual distractions behind and around the device are kept to a minimum (e.g., familiar faces, busy walls, posters etc.). Limit auditory information during the calibration, as filtering out voices/sounds can draw away from concentration on the task at hand.